

Low Cost BNR Retrofits in the Upper LIS Watershed

NEIWPCC Webinar, September 3, 2015 Jeanette Brown, President, JJ Environmental Emily Bird, Environmental Analyst, NEIWPCC

New England Interstate Water Pollution Control Commission

TODAY'S PRESENTERS

Emily Bird

- Environmental Analyst in NEIWPCC Water Quality Division
- Project manager at NEIWPCC for:
 - TMDLs
 - Long Island Sound
 - Peconic Estuary
- Coordinates the fivestate/EPA/NEIWPCC workgroup tasked with reevaluating the Long Island Sound TMDL
- Project manager for this study

TODAY'S PRESENTERS

Jeanette Brown

- President of JJ Environmental and a Research Assistant Professor at Manhattan College
- Areas of expertise:
 - Biological nutrient removal,
 - Plant operations
 - Biosolids management
 - Past-president of the Water
 Environment Federation
- PE, BCEE, Diplomat-American Academy of Water Resource Engineers

Presentation Outline

- Project Background & Purpose
- Scope of Work
- Methodology
- Summary of Results

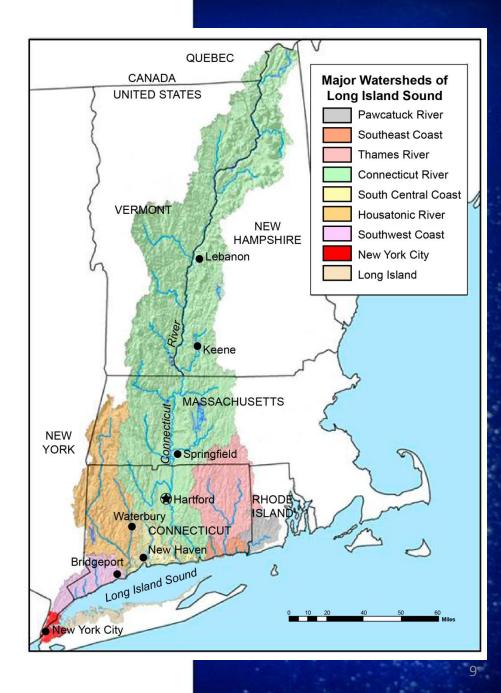
Introduction: The Long Island Sound

- Estuaries of National Significance
- Home to the National Estuary Program, Long Island Sound Study

The Problem

Eutrophication, or critically low DO influenced by multiple factors:

- Geography
- Weather patterns
- Nutrient loading

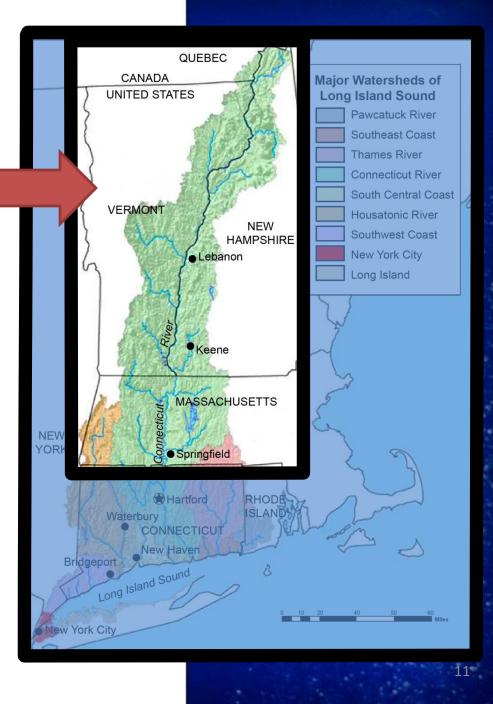

2001 LIS TMDL for Dissolved Oxygen

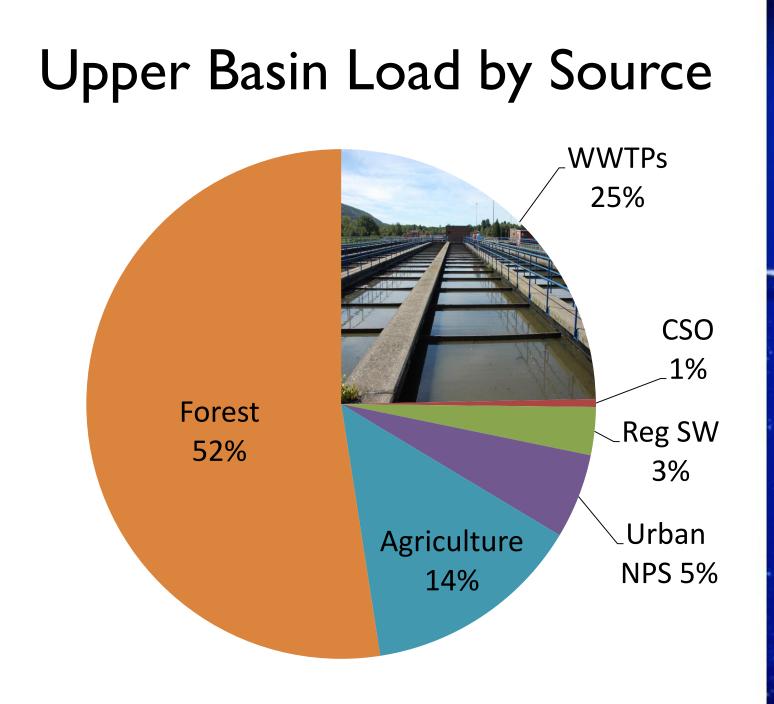
- Developed by CTDEEP & NYSDEC
- Approved by EPA in 2001


Nitrogen Load Reduction Targets

58.5% reduction for all in-basin sources achieved via WLAs & LAs:

In-Basin WWTP WLAs	Range from 58.5% to 86% reduction
In-Basin LA	10% reduction for SW and NPS
Upper Basin WLA	25% reduction for point source wastewater
Upper Basin LA	10% reduction for SW and NPS
Atmospheric Deposition	18% reduction expected (not required by TMDL) from implementation of 1990 CAAA




Upper Basin

Upper Basin Load

Estimated 19% of N load delivered to LIS is from upper basin

LISTMDL Need for Revision

- Reassess reduction goal periodically
- Models predict current TMDL reductions (without treatment alternatives) will not meet DO standards

LIS TMDL Revision Workgroup

- Five-state effort with EPA and NEIWPCC
- Currently reevaluating the TMDL effort

Low Cost Retrofit Purpose

- Ensure upper basin reductions are:
 - Cost-effective, and
 - Would improve DO in LIS
- Provide technical assistance
- ID opportunities for low cost N removal

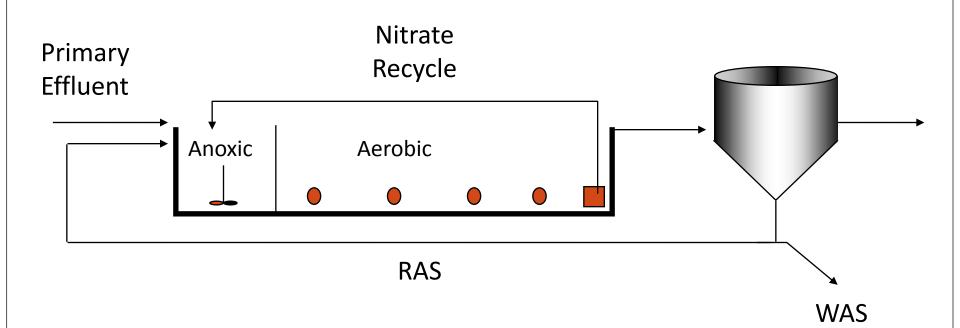
NEIWPCC's Role

- Administer funding
- Coordinate between project partners (MA, NH, VT, EPA), Contractor (JJ Environmental), and Contract Laboratory (Chemserve)
- Provide regular updates to LIS TMDL Workgroup

Low Cost Retrofit Project

- Evaluate treatment plants for biological nitrogen removal
- Determine mass of N reductions
- Ensure reductions are:
 - Cost-effective, and
 - Would improve DO in LIS

Biological Nitrogen Removal (BNR)


- BNR is a two step process
 - Nitrification (sufficient oxygen, sufficient alkalinity and aerobic volume)

$$2NH_{4}^{+} + 3O_{2} \rightarrow 2NO_{2}^{-} + 4H^{+} + 2H_{2}O$$
$$2NO_{2}^{-} + O_{2} \rightarrow 2NO_{3}^{-}$$

Denitrification (need sufficient carbon)

$$2NO_3^{-} + 10 e^{-} + 12 H^{+} \rightarrow N_2 + 6H_20$$

Typical BNR Plant Design (MLE Process)

Cyclic Operation BNR

- Another way is to turn aerators on and off at various intervals to create aerobic and anoxic zones
 - Need to ensure equipment allows for that
 - Some gear boxes cannot sustain this type of operation
 - More effected by seasonal changes

Project Team

- Emily Bird, Project Manager, NEIWPCC
- Jeanette Brown, President JJ Environmental, LLC
 - Passaro Engineering
 - Dr. David Stensel, University of Washington
- Project Officer: Leah O'Neill, U.S. EPA Region 1
- Technical Advisory Committee
- Contract Laboratory-Chemserve

Original 29 Treatment Facilities

- Massachusetts (ADF 1.0 to 17.0 MGD)
 - 15 Activated Sludge (14 conventional, one SBR)
 - 1 RBC
 - 2 Trickling Filter-followed by AS
- New Hampshire (ADF 0.3 to 6.0 MGD)
 - 3 Activated Sludge
 - 2 Oxidation Ditch

Original 29 Treatment Facilities

- Vermont (ADF 0.75 to 2.4 MGD)
 - 2 Activated Sludge
 - 3 RBC
 - 1 Oxidation Ditch

Project Tasks

- Major Tasks include:
 - Preparation of Quality Assurance Project Plan (QAPP) and approval by EPA
 - Site visits-comprehensive field investigations
 - Special sampling program
 - Preliminary evaluation and analysis
 - Evaluation of retrofit alternatives through modelling
 - Conceptual design and production of cost estimates based on mass of nitrogen removed
 - Final Report

QAPP

- Quality Assurance Project Plan approval
 - Ensures adherence to objectives
 - Prior to any obtaining any data (primary or secondary)
- QAPP included
 - Project Objectives, Organization, and Responsibilities
 - Data Generation and Acquisition
 - Data Use and Management
 - Records Management
 - QAPP Conformance and Compliance

Site Visits

- Site visit to each of 29 treatment plants (data acquisition)
 - August 20 to October 25
- Met with operators to
 - Asked operators to complete survey form
 - understand process
 - determine if any upgrades were planned
 - determine wet weather, cold weather issues and operating problems
 - toured plant and documented types of equipment, spare tankage, etc.
 - prepared plants for special sampling program

Site Visits-Initial Findings and Observations

- All plants below design flows and loads
- Many plants have unused tankage
 - Some were using only half of the plant capacity
- Two plants are university towns and three in ski areas
 - season flow variations possible
- Some plants nitrifying to some extent
- Some denitrifying either intentionally or inadvertently

Data Gathering-Existing Information

Existing data collected included:

- Requested two years' (minimum) operating data and DMR's
 - Two year data set important since it shows variability
- Drawings of bioreactors and clarifiers, if available,
- Design information on bioreactors, clarifiers, WAS and RAS pumps, including size, capacity, age
- Quantity and type of recycle or side-streams returned to head of plant or prior to bioreactors,
- Documentation of type and age of equipment such as blowers, mechanical aerators, and diffusers

Data Collection-Gaps

- Most plants did not have influent nitrogen data and only a few plants had effluent nitrogen
- In many cases, only one species of nitrogen was available, typically only NH₄-N
 - Major limitation
 - No influent N species data
 - No influent COD data, plus needed sCOD
 - Little or no effluent N species data, needed TKN and sTKN
 - No influent alkalinity data
- Needed all analytes on same set of samples
 - For example, cannot compare BOD from past samples

Special Sampling Program

- NEIWPCC hired a contract laboratory
 - Sample bottles prepared by laboratory with preservatives
 - Instructions given to operators on site visits
 - Refrigeration
 - Chain of Custody
 - Pick-up schedule

Special Sampling Program

- Samples: either influent and final effluent or primary effluent and final effluent depending on plant design
 - Influent or primary effluent after sidestreams
 - Digester supernatant
 - Thickening or dewatering filtrate
 - Other
- Three consecutive days of sampling
 - Analytes included SKN, SCOD, pH, alkalinity, TSS/VSS, NH₄-N, NO₃-N + NO₂-N on each sample.
 - BOD performed by plant on split sample
 - Plants filtered samples for sCOD and soluble Kjeldahl nitrogen
- Results of special sampling as well as the two year data set used to evaluate the plants.

Initial Evaluation

- Data analysis
 - Flows and loads
 - Seasonal variations
 - Growth expectations
 - C/N ratios
- Excel-based computer model
 - Allows quick evaluation

Process Changes

- Looked at the possibility of processes changes only but process changes must be evaluated over long periods of time and take into account seasonal and wet weather issues
 - For example, a change in process requires at least 2 to 3 SRTs to determine an effect
 - Requires a large amount of laboratory testing to verify results and determine what is happening in process
 - Some risk, since it may put the plant in jeopardy of a permit violation

Excel-based Nitrogen Design Model

- Model developed using all standard design equations and kinetic coefficients
- Input: flow, temperature, BOD, sCOD, NH₄-N, TKN
 - Output: aerobic volume, effluent NH₄-N and NO₃-N concentrations
- Used in conjunction with statistical analysis, C:N ratio, and plant data to develop final list of plants for more in-depth study

Plants Selected for Comprehensive Modelling

- Of the 29 plants studied, 20 were selected for comprehensive modelling
 - 5 from Vermont
 - 4 from New Hampshire
 - 11 from Massachusetts
- Plants eliminated:
 - Already doing nitrogen removal
 - Industrial waste input impacts nitrogen removal
 - Too low C:N ratio
 - Problems with nitrification

BioWin Modeling and Second Site-Visit

- Baseline model developed for all plants except RBC facilities
- Preliminary model (Baseline) model developed and calibrated
 - Baseline model reasonably replicated current plant conditions and configured to match the number and dimension of the various unit processes used

BioWin Modeling and Second Site-Visit

- At second site visit
 - Preliminary conceptual Nitrogen removal model presented
 - concepts for N removal discussed at second site visit
 - operator concerns/comments noted
 - obtained most current plant data
- New information entered into model (collected additional year of data)
 - recalibrated

Second Phase BioWin Modeling

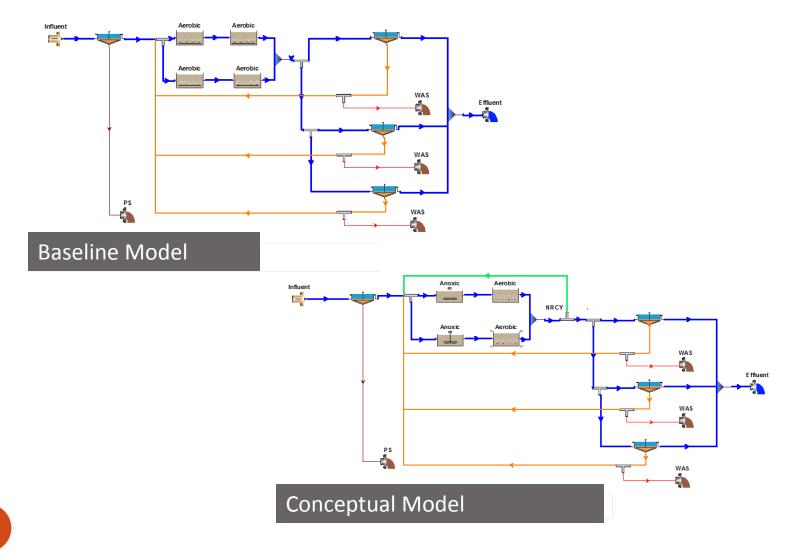
Second Phase

- Baseline model was re-calibrated using the annual average plant data from 2011 including new data from 2014
- Correlated as closely as possible to the current effluent BOD, TSS and TN concentrations (Industry standard ±5 to 20%)

Second Phase BioWin Modeling

- Calibration: matched as closely as possible plants process control parameters
 - MLSS concentration
 - RAS flow
 - WAS flow
 - Clarifier Operation

Second Phase BioWin Modeling


Once calibrated

- various design alternatives and changes in process control parameters were evaluated
 - Addition of anoxic zones, swing zones
 - Mixers
 - IR pumps
- configuration with lowest possible effluent total nitrogen concentration called Conceptual Design
- design tested at winter temperatures and winter temperatures at 80% of design flow

RBC Plants

- Biofilm processes much different than activated sludge
 - Usually get very good nitrification in RBC's and a little denitrification
 - Some success in other areas using recycle
 - Concern is shear forces
- For this project, evaluated excess hydraulic capacity
 - Estimated N removal

Example of BioWin Models

Example BioWin Output

Plant Influent Data							
Parameters	mg/L	lb/d					
Volatile suspended solids	257	2745.3					
Total suspended solids	286.78	3063.4					
Total Kjeldahl Nitrogen	26	267.1					
Total Carbonaceous BOD	286	3055.1					
Total N	26	267.1					
рН	7.3	0.0					
Ammonia N	16.5	176.3					
Nitrate N	0	0.0					
Parameters							
Temperature, °C	16						
Flow, MGD	1.23						

Baseline Model					
Effl	uent				
mg/L	lb/d				
3.85	39.7				
4.72	48.6				
2	21.1				
1.73	17.9				
15	156.0				
6.32	0.0				
0	1.7				
13.07	134.6				
16					
1.23					

Design Model				
Effl	uent			
mg/L	lb/d			
4.32	44.5			
5.59	57.6			
2	24.2			
2.64	27.2			
4	41.0			
6.60	0.0			
1	7.4			
1.43	14.8			
16				
1.23				

Compare Baseline					
to Mod	el Design				
mg/L	lb/d				
-0.47	-4.85				
-0.87	-8.97				
0	-3				
-0.91	-9.30				
11	115				
-1	-6				
11.64	119.80				

Summary BioWin Output

Current Influent TN, lbs/d	267
Current Effluent TN, lbs/d	156
Current Removal, lbs/d	111
Predicted Effluent TN, lbs/d	41
Predicted Removal, lbs/d	226
Net Change, lbs/d	115
Net Change, lbs/year	41975
Winter Temperature, lbs/year	39481
Winter Temperature/High Flow, lbs/year	37067

Cost Estimation

- Once conceptual design completed
- Cost based on equipment needed to achieve results from the conceptual design model
- Estimates included equipment such as:
 - Mixers
 - Pumps
 - Control panels
 - Baffles
 - Air valves
 - Instruments

Cost of Nitrogen Removal

- Costs normalized to wage rates from Central Valley of Connecticut to allow comparisons from one state to another
- Capital cost was amortized over a 10-year period and a 20-year period at 3% interest
- Estimate of O&M costs (mostly increased electrical costs)
- Total cost for 10 years and 20 years was divided by the estimated pounds of nitrogen removed over that period
- Cost estimates did not include engineering costs, new infrastructure

Cost Estimate Example

N EIWPCC Low Cost Retrofits for Nitrogen Removal at Wastewater Treatment Plants in the upper Long Island Sound Watershed		COST ESTIMATE		
Contractor Name:	JJ Environmental	Date:	1-Jun-14	
Address:	17 Archer Lane	Project No.	0302-001	
	Darien, Ct 06820	Proposal No.	4	
Telephone No:	1-203-309-8768			
ECTION A: CONTRACTO			Revisions	
1. Total Contractor Lab	or	\$71,190.66		
2. Total Contractor Mat	erial	\$118,000.00		
7 3. Total Contractor Equ	ipment	\$26,920.00		
4. Unit Price Costs				
5. Subtotal Contractor	Cost	\$216, 110.66		
6. Contractor Mark-Up	15%	\$32,416.60		
7. Contractor Total Sec	tion A	\$248,527.26		
ECTION B: CONTRACTO	DR WORK			
8. Names Of Subcontra	actors			
A. Electrical Su	bcontractor	\$111,258.92		
B. Instrumentati	on Integrator	\$11,914.00		
C.				
D.				
Ε.				
_ F.				
	s Proposals (A through F)	\$123, 172.92		
10. Contractor's Mark-U	o On Subs Proposals (5%)	\$6,158.65		
11. Subcontractor Total	Section B	\$129,331.57		
	TRACTED UNIT PRICE COSTS			
SECTION D: CONTRACTO				
12. Amount Requested	Total Lines 7 & 11)	\$377,858.83		

Example \$/Ib TN removed

Cost Per Pound of Additional Nitrogen Removed as Compared to Capital Improvement Costs

115	Delta Pounds N Removed Per day
41,960	Delta Pounds N Removed 1 Year
419,604	Delta Pounds N Removed 10 Year
839,208	Delta Pounds N Removed 20 Year
377,859	Capital Cost of Conceptual Design
\$9.01	Cost Per Pound Over 1 Year
\$0.90	Cost Per Pound Over 10 Years
\$0.45	Cost Per Pound Over 20 Years
Cost Per Pound of Ac	dditional Nitrogen Removed Including Interest
& Operational Costs	
3.00%	Interest Rate
10	Loan Term in Years
\$3,648.63	Monthly Payment (100% Financed)
\$437,835.96	Total Cost P & I Over 10 Years
\$590,000.00	Additional O&M over term
\$1,027,835.96	Total Cost Over 10 Years
+-,,,	Total Cost Over 10 Years
\$2.45	Total Cost Per Pound of Additional

Cost Per Pound of Ad	Cost Per Pound of Additional Nitrogen Removed as Compared to				
Capital Improvement	Costs				
115	Delta Pounds N Removed Per day				
41,960	Delta Pounds N Removed 1 Year				
419,604	Delta Pounds N Removed 10 Year				
839,208	Delta Pounds N Removed 20 Year				
377,859	Capital Cost of Conceptual Design				
\$9.01	Cost Per Pound Over 1 Year				
\$0.90	Cost Per Pound Over 10 Years				
\$0.45	Cost Per Pound Over 20 Years				
Cost Per Pound of Ad	ditional Nitrogen Removed Including Interest				
& Operational Costs					
3.00%	Interest Rate				
20	Loan Term in Years				
\$2,095.60	Monthly Payment (100% Financed)				
\$502,943.04	Total Cost P & I Over 20 Years				
\$1,180,000.00	Additional O&M over term				
\$1,682,943.04	Total Cost Over 20 Years				
\$2.01	Total Cost Per Pound of Additional				
\$2.01	Nitrogen Removed Over 20 Years				

Summary of Results-Estimated TN Removal and Cost by State

MA FACILITIES	Design, MGD	ADF, MGD	lbs TN/day	lbs TN/year	Capital Cost, \$	Cost/lb (10 yrs)	Cost/lb (20 yrs)
Athol	1.75	0.75	41	15,045	\$209,710	\$2.27	\$1.58
Belchertown	1.00	0.40	0.70	244	\$88,514	\$170.92	\$153.00
Gardner	5.00	2.98	258	94,071	\$368,414	\$1.05	\$0.86
Great Barrington	3.20	1.08	63	23,112	\$297,513	\$2.91	\$2.27
Palmer	5.60	1.47	91	33,215	\$320,722	\$1.67	\$1.19
Pittsfield	17.00	11.94	854	311,853	\$745,033	\$0.51	\$0.40
South Hadley	4.20	2.66	278	101,470	\$302,609	\$0.51	\$0.36
Spencer	1.08	0.78	64	23,269	\$352,431	\$4.52	\$3.78
Warren	1.50	0.31	N/A	N/A	N/A	N/A	N/A
Webster	6.00	2.99	250	91,383	\$365,807	\$0.87	\$0.67
Winchendon	1.10	0.51	30	10,867	\$201,739	\$5.09	\$4.17
TOTAL	47.43	25.87	1,930	704,529	\$3,252,492		

NH FACILITIES	Design, MGD	ADF, MGD	lbs TN/day	lbs TN/year	Capital Cost, \$	Cost/lb (10 yrs)	Cost/lb (20 yrs)
Claremont	3.89	1.23	115	41,975	\$377,859	\$2.45	\$2.00
Hanover	2.30	1.25	163	59,550	\$401,027	\$1.74	\$1.40
Hinsdale	0.30	0.25	13	4,954	\$98,446	\$2.50	\$1.52
Littleton	1.50	0.82	N/A	N/A	N/A	N/A	N/A
TOTAL	7.99	3.55	291	106,479	\$877,332		

VT FACILITIES	Design, MGD	ADF, MGD	lbs TN/day	lbs TN/year	Capital Cost, \$	Cost/lb (10 yrs)	Cost/lb (20 yrs)
Ludlow	1.05	0.36	18	6,411	\$214,780	\$4.79	\$3.14
Lyndonville	0.75	0.16	N/A	N/A	N/A	N/A	N/A
Springfield	2.40	0.97	74	27,106	\$391,634	\$4.57	\$3.85
St. Johnsbury	1.60	1.00	N/A	N/A	N/A	N/A	N/A
Windsor	1.13	0.27	N/A	N/A	N/A	N/A	N/A
TOTAL	6.93	2.76	92	33,517	\$606,414		

Summary of Results-Estimated TN Removal and Cost by Watershed

FACILITYRECEIVING WATERRIVERAthol, MAMillersConnecticutBelchertown, MALampson BrookConnecticutClaremont, NHSugarConnecticutGardner, MAMillersConnecticutHanover, NHConnecticutConnecticutHinsdale, NHAshuelotConnecticutLittleton, NHBlack RiverConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSyringfield, VTBlack RiverConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutWindsor, VTFonnecticutHousatonicPittsfield, MAHousatonicHousatonicPittsfield, MAFrench RiverThames			
Belchertown, MALampson BrookConnecticutClaremont, NHSugarConnecticutGardner, MAMillersConnecticutHanover, NHConnecticutConnecticutHinsdale, NHAshuelotConnecticutLittleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSt JohnsburyPassumpsicConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutWindsor, VTHousatonicHousatonicPittsfield, MAHousatonicHousatonic	FACILITY	RECEIVING WATER	RIVER
Claremont, NHSugarConnecticutGardner, MAMillersConnecticutHanover, NHConnecticutConnecticutHinsdale, NHAshuelotConnecticutLittleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutHousatonicPittsfield, MAHousatonicHousatonic	Athol, MA	Millers	Connecticut
Gardner, MAMillersConnecticutHanover, NHConnecticutConnecticutHinsdale, NHAshuelotConnecticutLittleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonic	Belchertown, MA	Lampson Brook	Connecticut
Hanover, NHConnecticutConnecticutHinsdale, NHAshuelotConnecticutLittleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutHousatonicPittsfield, MAHousatonicHousatonic	Claremont, NH	Sugar	Connecticut
Hinsdale, NHAshuelotConnecticutLittleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutHousatonicPittsfield, MAHousatonicHousatonic	Gardner, MA	Millers	Connecticut
Littleton, NHAmmonoosucConnecticutLudlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Hanover, NH	Connecticut	Connecticut
Ludlow, VTBlack RiverConnecticutPalmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutHousatonicPittsfield, MAHousatonicHousatonic	Hinsdale, NH	Ashuelot	Connecticut
Palmer, MAChicopeeConnecticutLyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Littleton, NH	Ammonoosuc	Connecticut
Lyndonville, VTPassumpsicConnecticutSouth Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonic	Ludlow, VT	Black River	Connecticut
South Hadley, MAConnecticutConnecticutSpencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Palmer, MA	Chicopee	Connecticut
Spencer, MACranberry BrookConnecticutSpringfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Lyndonville, VT	Passumpsic	Connecticut
Springfield, VTBlack RiverConnecticutSt JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	South Hadley, MA	Connecticut	Connecticut
St JohnsburyPassumpsicConnecticutWarren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Spencer, MA	Cranberry Brook	Connecticut
Warren, MAQuaboagConnecticutWinchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Springfield, VT	Black River	Connecticut
Winchendon, MAMillersConnecticutWindsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	St Johnsbury	Passumpsic	Connecticut
Windsor, VTConnecticutConnecticutGreat Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Warren, MA	Quaboag	Connecticut
Great Barrington, MAHousatonicHousatonicPittsfield, MAHousatonicHousatonic	Winchendon, MA	Millers	Connecticut
Pittsfield, MA Housatonic Housatonic	Windsor, VT	Connecticut	Connecticut
	Great Barrington, MA	Housatonic	Housatonic
Webster, MA French River Thames	Pittsfield, MA	Housatonic	Housatonic
	Webster, MA	French River	Thames

WATERSHED	Design, MGD	ADF, MGD	lbs TN/day	lbs TN/year	Capital Cost, \$
Connecticut River	36.15	16.17	1,146	418,177	\$3,327,885
Housatonic River	20.2	13.0	917	334,965	\$1,042,546
Thames River	6.00	2.99	250	91,383	\$365,807
TOTAL	62.35	32.18	2,313	844,525	\$4,736,238

Training Program and Summary

- As part of this project, two training session were heldone in MA and one in NH/VT region
 - Purpose was to give more in-depth information to operators on
 - Theory of nitrogen removal
 - Process control
- The results of this project show that through some relatively inexpensive capital improvements a significant amount of nitrogen can be removed
 - Advantage of capital improvements is a more robust process that can sustain seasonal changes and ensure permit compliance

CONTACT

Jeanette Brown

Principal Investigator

President, JJ Environmental, LLC

203-309-8768

jjenvironmental@gmail.com

Emily Bird Project Manager & LIS TMDL Workgroup Coordinator NEIWPCC 978-349-2521

ebird@neiwpcc.org

QUESTIONS